Modelowanie wzrostu guzéw nowotworowych i

wptywu na nie promieniowania

Monika J. Piotrowska

Wydziat Matematyki, Informatyki i Mechaniki
Uniwersytet Warszawski
monika@mimuw.edu.pl

"Miedzy teoria a zastosowaniami - matematyka w dziataniu"
Bedlewo 2013

M.J. Piotrowska MCS CA model



The problem

@ About 4 in 10 people presently receive
radiotherapy as part of their cancer
treatment [1];

@ But ... variables in ‘treatment-space’:

o Number of fractions per day/week;
e Timing of fractions within a day;
o Intensity (dosage) of each fraction.

@ Choice space for treatments is vast!

Source: [1] Cancer Research UK,
'Radiotherapy Briefsheet', Aug. 2010.
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@ But ... variables in ‘treatment-space’:

o Number of fractions per day/week;

e Timing of fractions within a day;

o Intensity (dosage) of each fraction.
@ Choice space for treatments is vast!
@ Current programs are largely ad-hoc;
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'Radiotherapy Briefsheet', Aug. 2010.
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The problem

@ About 4 in 10 people presently receive
radiotherapy as part of their cancer

treatment [1];
@ But ... variables in ‘treatment-space’:

o Number of fractions per day/week;
e Timing of fractions within a day;
o Intensity (dosage) of each fraction.

Choice space for treatments is vast!
Current programs are largely ad-hoc;

@ .. Numerical simulation provides

Source: [1] Cancer Research UK,
an ideal methodology to 'Radiotherapy Briefsheet', Aug. 2010.

investigate this space
(cost-effective, non-destructive).
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Experimenatl Data: EMT6/Ro Spheroids

° (mouse mammary tumour
cells) are one of the most well-studied
(in vitro) cell lines;

e Thus, a good candidate for
refinement of numerical simulation.
@ We model the bulk tumor dynamics
(growth, necrosis, proliferating rim
etc.), and, response of EMT6/Ro to
X-irradiation.

100 pm

"%Healthy Region
GRS

‘Source: Yu et a. (2007), 3-d video holography through bilogical issue.
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Experimenatl Data: EMT6/Ro Spheroids

° (mouse mammary tumour
cells) are one of the most well-studied
(in vitro) cell lines;

e Thus, a good candidate for
refinement of numerical simulation.

@ We model the bulk tumor dynamics
(growth, necrosis, proliferating rim
etc.), and, response of EMT6/Ro to
X-irradiation.

o Calibration (two step):

© Step 1: Tumor growth without
irradiation;

@ Step 2: Tumor response to
X-irradiation.
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Defining the Cellular Automata (CA)

Moore (8)
Neighbourhood

@ A discrete model consisting of a
regular grid of ‘cells’;

@ Each ‘cell’ exists in one of a finite
number of states;

@ Sites update based on interactions
with neighbours:

Von Neumann (4) o Moore (8) neighbourhood (
Neighbourhood ) o

e Von Neumann (4) neighbourhood;
o (or, hexagonal, octagonal lattices).

@ Updates: A set of update rules defines
transition of each cell from current
state to the next;
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Proposed Cellular Automata (CA)

o Grid: regular;
< / o Lattice type: Quasi-2D;
D e Neighbourhood: Moore (8);
e Nutrients/waists: CHO, O,, HT;
e Updates: Set of rules defining

transition takes into account:

Quasi-2D

e concentration of nutrients and
waists;

/. [ o cell cycle;
))}/ o cell metabolism;
o (optional) irradiation does;
3D
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Metabolism: an algorithmic approach

Overall logic: Sites prefer proliferation >
quiescence (progress over stasis)

Step 1: Remove Cell
unviable sites (CHO, pH, Death
cell-cycle)
Step 2: Apply vacancy | &
. . r>rG1 At

stopping condition at & TN 3 Cell Death:
G4/S boundary #Ni”ee <#NCTit Remove cells,
produce necrotic
waste (H")

Step 3: Check pH,
and then proliferative
criteria

V
| Substrate:
\ We match

! experimental
! conditions
]
'
]
]
|
]
'

Cell
Death [FS1985] ...
[CHO] = 5.5 mM
[02] =0.28 mM

pH=74

An.
Quiesc.

Ox An. Ox
Prolif. Prolif. Quiesc.
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Cell Phase Cycling: checkpoints and progression

Cell cycle timing (lit.)
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Numerical artefacts: geometry problem

We have a square lattice with Moore neighbourhood.

Discrete Concentration Contours 107
101 50

. ——t—— [ &> 10 minvtes]
91 s e

3

. If diffusion probability is
homogeneous on a square lattice,
results in anisotropic diffusive

s frontier
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11 R — —
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Numerical artefacts: geometry problem

For isotropy, apply heterogeneous diffusion scaling based on
geometry of the lattice.

meter]

Lattice site [100 micror

Piotrowska’s Concentration Contours

[ 10minutes

~~ N

N \\\\\ \

orthogonal

o « scaled diffusion coefficient
for considered substances
(glucose, oxygen and pH),

e 3 = 2v/2 correction factor,

o f=4+2y2is the
normalising factor,

o 7 diffusion step.

diagonal
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Numerical artefacts: numerical accuracy

Without correction factor
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Numerical artefacts: algorithm stability

w10 Difiusion Profile after Ten minutes

Discrete diffusion algorithm
requires careful choice of 7
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Diffusion algorithm

Uig Ui
Uy r""‘?\‘{:n
T e
;1 o X:L—1 Xi ;1—1 ‘ XN‘»X
Alternative modelling of diffusion: ~

@ Quasi state approximations

AV
+Upx W1
.

@ Finite Element Methods (FEM) ; —
Galerkin method

+uyx V1

Source: S. Yip (ed.), Handbook of Materials

Modeling. Volume |: Methods and Models, 1-32.
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Numerical artefacts: location of new cells

&y V2()+1)
e 2\+1

A= 1@_@ ~ 0.7071
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Calibration w/o irradiation: growth properties

500 pm _;-F'ﬁ- -
e e

-

...h\.n‘.'d

2.8 mM 5.5 mM

16.5 mM

Tumour characteristics at 20 days growth for simulations under varying substrate
glucose concentrations at 0.28mM oxygen concentration. Colouring indicates cell

metabolism: proliferative,
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Calibration w/o irradiation: bulk measurements

1500 o “_ 10
€ a £ b
= 1250 =
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Replication of the Freyer & Sutherland in vitro spheroid glucose trial on EMT6/Ro

tumors at 5.5mM substrate CHO concentration for 20 days experiment. Data reported

based on Gompertz equation nonlinear fit to data.
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Calibration w/o irradiation: viable rim and [CHO]

§ a b

~ 400| © Frever & Sutherland (1985) 400 O Freyer & Sutherland (1986)

§ @ Simulation ([CHO] = 5.5 mM) @ Simulation
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(a) Replication of the Freyer & Sutherland 1985 in vitro spheroid glucose trial on
EMT6/Ro tumors at 5.5mM substrate [CHO] for 20 days experiment. (b) Thickness
of viable cell rim versus medium glucose concentration. Open markers indicate data

from the reference, closed markers are simulation outputs.
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Surviving Fraction (SF) measurement

colonies counted

_ _ colonies observed
cells seeded x (PE/100)

# of cells plated

dissociation
seeding l

incubation 100 medium
(W days)l l
# of counted T ==
colonies: 90 72
BES 90%
SF: 1

0.2
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Surviving Fraction (SF) measurement

LQ model: e EMT6/Ro: SF(R) = 0.8080" (non-log
SF — e—aR-BR? scale),
e Cell might divide many times during the
Luk&Sutherland (1987) incubation (cell cycle duration ~ 21h);
V e mines @ Luk et al. (1987) are fully aware that the 11d
w4 woeen | SF assay will see repair occurring during the
LS, °‘“’ incubation period and that this repair will lead

B to more surviving colonies being counted.

5
3
T

4 Do(37°)2446y
\

SURVIVING  FRACTION

5

DoICE)=1.26y |

SF data may underestimate the true
R : irradiation induced cell death probability

5 10 25 30 3% 40

T ol SF data does not give us the
information on timing
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Irradiation modelling: immediate cell death

Hahn et al. (1974):

@ There is little or no immediate cell death observed within 6h of
irradiation.

Kelley et al. (1981):

@ Even for a very high dose (24Gy) there is no immediate change
in the tumour volume.

Our trials:

@ So long as the immediate death rate from irradiation is smaller
than 0.8 the volume will be unchanged for a while.
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Irradiation modelling: cell repair time

Hahn et al. (1974):
@ Even a small dose of 0.5 Gy can induce delays to mitosis of up
to 6h;

o Estimated that the division delay induced by a single 10 Gy
dose was over 10 h — approx. 1 min/rad.

Kelley et al. (1981):

@ For a large dose (24 Gy) the tumour volume roughly maintains
at pre-dose levels for 8 days post-irradiation;

e For a smaller dose (6 Gy) it was estimate that the tumour
volume progression is hindered by 50% of the day-0 volume
after 8 days.

Wilson (2004):
@ Points out that repair can occur throughout the cell cycle, and
is not confined to one particular check-point.
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Irradiation & repair module

Our approach:

@ The probability of death immediately upon irradiation is zero;

@ Sites undergo repair exclusively at ‘check-points’ between cell
phase cycles (e.g. G1|S, S|Gy, etc.), with the exception of the
M|D transition where repair is assumed impossible;

Irradiation )
event (R) The Repair Delay:

@ Repair takes an amount of time Cell Phase Delay(R)
Transition

which is proportional to the Reached
irradiation dose, R;, experienced by

the site;

@ Repair is not always successful, y
. . . . Critical damage,
with probability b(R;) the site will death

enter the cell death module. o >
e

1- b(R)

Repaired
Site
Prob: b(R)

We calibrate the model with the results of Kelley et al. (1981).



Irradiation modelling: setting initial conditions

Kelley et al. (1981)

Kelley et al. (1981) lab. exp.: 600 —r—1—
: 400 + :
@ Tumours were inoculated i ]
at a size of approximately day of
200 - irradiation 7

2 x 10* cells;

o
o
K @
%
\
.y
<
7
/
/
Bl
i
]
.y

@ Next tumours grown in

Percentage of Day 0 Volume

o 80 | :
silico for 2 days, and then 6o f rads ]
at day two the irradiation ol 2 609 b ]
protocol (at 0Gy, 6Gy or o ). MR

. 0o 1 2 3 4 5 6 7 8 9 10
24Gy) was applled. ) Time of Growth (days)

M.J. Piotrowska MCS CA model



Irradiation modelling: effect of delay and death. prob.

Effect of
Effect of delay death prob.

300, b=0.95 300, Delay =8h
o) Delay (h) 4
1S — 2
S5 250 182 250
o) p—
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R 1001 Exp. data 6Gy 10a1

Kelley et al. (1981)
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Results: model outputs

22
Delay (h) b 9 Z0o0om 124
150 120\ 1 A 188 56; dose/
! / — 7
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Results: calibrated outputs

% of Day 0 Volume

Exp. data
Kelley et al.
y . 150
400 5
8 125
300 =
250% 8 100 No EMT6/Ro exp. data
Qualitative agreement
2 N
00 PN <—  \ith R1H data
150% @ Jung et al.
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e 2
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0 _.2 4 6 8 10, 2 4 6 8 10
Time of Growth (days) Dose (Gy)
>4 4 4 4
At 125% 150% 175% 250% i
% Day 0 Vol 2052 099 Foo Agreement with
O 2| p?026 2 2 2 <— EMT6/Ro exp. data
@ Rockwell&Kallman
8 0| e*— 0 0 0
12 4 6 12 4 6 12 4 6 12 4 6
Dose (Gy)
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Results: calibrated outputs

@ CA model estimated direct

% "N irradiation survival probability
:': 4 T at 37 ozc function gives rise to a more severe
§ R death rate (steeper gradient);
< 2UN . .o e .
% 2 AL @ Our irradiation probability curve is
= A closer to the EMT6/Ro survival
‘—E’ 3 \in air data for irradiation on ice;
8 eat37°C
3 _ _ @ The difference between the two
g 4 S'T_‘;':;;on estimates under standard conditions
~ 20 20 is more than an order of

Dose (Gy) magnitude.
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Summarising

Key components:

@ We have proposed a calibrated, quasi-2D, CA model of
EMT6/Ro tumour growth by fitting to existing in vitro data:

© Bulk growth properties;
© Necrotic dynamics;

© Cell cycle phase distributions.

@ Novel additions:

© Irradiation-response module: probabilistic cell death with
repair.

@ Estimation of irradiation survival probability function.

© Estimation of cell-cycle delays: due to repair (unavailable as
yet, experimentally).
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Summarising

@ New, accurate, estimates of cell phase dynamics after
irradiation;

@ Our calibrated model shows that cell death probabilities based
on survival fraction data used in other computational models
may be greatly overestimated;

@ For the lab: Predictions on cell-cycle response dynamics
(peack in S and Gy phases);

@ For optimised therapy: A new platform to run optimal search
over the large radio-therapy treatment space.
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Opportunities

CAs are not the perfect models,
but are a reasonable choice for
tumour dynamics;

The dynamics of CAs are a good
representation of real spheroid
dynamics (but in vivo?);

CAs allow investigation of
non-experimentally accessible
data or data for which
experiments are too expensive;

CAs show good promise for
investigation of theory
(qualitative & quantitative).

Opportunities & Challenges for the work

Challenges

Contingent metabolism needs to
be handled carefully (where do
you stop? genetic pathways?);

Mapping from continuous to
numerical diffusion not
straight-forward (scaled?);

Migration & metastasis?
Cell volume considerations?
Parameters estimation?
Cell irradiation response?

Irradiation side effects (of
‘optimal’ therapies)?
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Our publications

Co-worker: dr Simon Angus, Monash University
simon.angus@monash.edu.au

More on our work can be found:

e S.D. Angus, M.J. Piotrowska: 'A numerical model of
EMT6/Ro spheroid dynamics under irradiation: calibration &
estimation of the underlying irradiation-induced cell survival
probability’, Journal of Theoretical Biology, 320, 2013, 23—32;

e S.D. Angus, M.J. Piotrowska: 'The Onset of Necrosis in a 3D
Cellular Automaton Model of EMT6 Multi-Cellular Spheroids’,
Applicationes Mathematicae, 37(1), 2010, 69-88;

o M.J. Piotrowska, S.D. Angus: 'A Quantitative Cellular
Automaton Model of in vitro Multicellular Spheroid Tumour
Growth’, Journal of Theoretical Biology, 258, 2009, 165-178.
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